Bootstrapping je v matematické statistice jakýkoli test nebo metrika, která používá náhodný výběr s vracením a spadá do širší třídy metod resamplingu, jež samy spadají mezi metody Monte Carlo. Bootstrapping se používá především pro odhad přesnosti (intervaly spolehlivosti, chyby predikce atd.) výběrových statistik.[1][2] Tato technika umožňuje odhad distribuce téměř jakékoli výběrové statistiky pomocí metod náhodného výběru.[3]
Bootstrapping odhaduje distribuci výběrové statistiky a/nebo její vlastnosti (například její rozptyl) mnohonásobným opakováním výběru s vracením z aproximujícího rozdělení. Běžnou standardní volbou pro aproximující rozdělení je empirická distribuční funkce pozorovaných dat. V případě, kdy lze předpokládat, že pozorování v souboru jsou nezávislá a stejně rozdělená, lze to provést vytvořením řady výběrů s vracením z pozorovaného souboru dat (o stejném rozsahu jako pozorovaný soubor dat) .
Bootstrapping lze také použít pro testování hypotéz. Často se používá jako alternativa ke statistickým odhadům a testům založeným na předpokladu parametrického modelu, když je tento předpoklad pochybný anebo pokud je parametrický závěr nemožný nebo vyžaduje složité vzorce pro výpočet standardních chyb.
Bootstrapping publikoval Bradley Efron v článku „Bootstrap methods: another look at the jackknife“ (1979),[4][5] inspirovaným dřívějšími pracemi na metodě jackknife.[6][7][8] Vylepšené odhady rozptylu byly vyvinuty později.[9][10] Bayesovské rozšíření bylo publikováno v roce 1981.[11] Booststrap korigovaný na vychýlení a zrychlený (bias-corrected and accelerated, BCa) publikoval Efron v roce 1987 a algoritmus ABC v roce 1992.[12]